MOMENTUM MATH LEVEL G

TABLE OF CONTENTS - - - - - - -

Unit 6—Probability

H	Theoretical Probability501 How do you find the likelihood of an event without doing an experiment?
H	Experimental Probability511 How does experimental probability differ from heoretical probability?
	Representing Probabilities521 n what ways can probabilities be represented?
	Complementary Events531 What are complementary events?
	Making Predictions541 How do you use probability to make predictions?
H	ndependent Compound Events
H	Dependent Compound Events561 How can you find the probability of dependent ompound events?
H	Applications of Compound Events571 How can you find the probability of real-world ompound events?
	he Fundamental Counting Principle
H	ombinations and Permutations591 How can you find combinations and permutations of lifferent objects?
Glossary	A1

THEORETICAL PROBABILITY

Today's Destination

A

How do you find the likelihood of an event without doing an experiment?

Vocabulary —

Outcome A result of an event

Probability The likelihood that an event will happen, expressed as a number from

 $\boldsymbol{0}$ to 1, with a probability of 0 meaning the event cannot occur and a

probability of 1 meaning the event is certain

Problem of the Day —

How do you know Marta is correct?

Does Marta have a chance to win if Matt uses a regular coin with heads on one side and tails on the other? Explain your reasoning.

TEST DRIVE

Which of these describes the likelihood of the spinner landing on an even number?

- certain
- impossible
- less likely
- more likely

JUMPSTART Think about whether there are more even or odd numbers.

- A survey at a popular ice-cream store found that 25% of customers prefer chocolate ice cream. Of the 500 people that come into the store on a certain day, how many of them are predicted to prefer chocolate ice cream?
 - F 25
 - 100
 - 125
 - 500

JUMPSTART Set up a percent proportion.

A **factorial (!)** is a notation that means to multiply all of the positive integers from 1 to a given number. For example, 5! is read as *five factorial* and means the following:

$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

1) What is 6!?	
Write It!	
2) What is $\frac{8!}{5!}$?	
Write It!	
Factorial notation is helpful when working with permutations and combinations. You can evaluate factorials with your calculator by using the! symbol.	
3) Stephan took the 7 letters in his name and scrambled them. How many permutations are possible?	
Write the permutation as a factorial and then use your calculator to evaluate.	
Write It!	
4) There are 10 students waiting in line. In how many different orders can they line up?	
Write the permutation as a factorial and then use your calculator to evaluate.	
Write It!	