MOMENTUM MATH LEVEL G

Unit 4—Variables and Number Properties

Lesson A: Variables
Lesson B: Evaluating Expressions
Lesson C : Representing Multiplication and Division
Lesson D : Expressions with More than One Operation
Lesson E : The Order of Operations
Lesson F: Expressions with More than One Unknown
Lesson G : The Commutative Property
Lesson H : The Associative Property
Lesson I : The Distributive Property
Lesson J : Simplifying Expressions
Glossary

VARIABLES

Today's DestinationWhat is a variable?

Vocabulary —

Equation A number sentence relating two expressions that are equal in value

Variable A letter or symbol that represents an unknown value or a value that can change

Problem of the Day —

What is the answer to Marta's math problem? _____

IN THE DRIVER'S SEAT

Simplify.

1)
$$-9^2 =$$

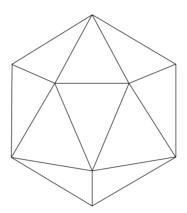
4)
$$6+6+6 \div 3 =$$

2)
$$(-9)^2 =$$

5)
$$(6+6+6) \div 3 =$$

6)
$$\frac{6+6+6}{3} =$$

For each expression, write brackets or parentheses to show which computation you will perform first. Then simplify the expression.


8)
$$5^2 \div 10$$

9)
$$1-11^2+9$$

10)
$$\frac{7+17}{8} - 12$$

SIDE TRIPS

1) An icosahedron is a solid figure made of 20 triangular faces. A regular icosahedron has 20 identical equilateral triangles for faces. The formula for the area of a triangle is $\frac{1}{2} \cdot b \cdot h$. Find the surface area (the total area of all the triangles) of a regular icosahedron when b=3 centimeters and h=2.6 centimeters.

Compute It!

2) Circle the operations that will result in an increase of value if x = 3.

multiply x by 0	multiply x by 1
add 0 to <i>x</i>	add −3 to <i>x</i>
add 1 to x	multiply x by $\frac{1}{2}$

3) Circle the operations that will result in an increase of value if x = -3.

multiply x by 0	add 0 to <i>x</i>
add 1 to x	add −3 to <i>x</i>
multiply x by 1	multiply x by $\frac{1}{3}$